VARIABLE PULSEWIDTH LASER CONTROLLER

- MICROPROCESSOR CONTROL
- VARIABLE PULSEWIDTH 100μ S TO $\mathbf{> 2 m S}$
- UP TO 2500 WATTS
- MULTIPLE CONFIGURATION STORAGE
- PROGRAMMABLE DUTY CYCLE
- RS232 PORT FOR REMOTE CONTROL
- MULTIPLE VPFN/POWER SUPPLY CONTROL

DESCRIPTION:

The Model 8800V laser flashlamp controller provides variable pulsewidth pulses for pumping solidstate lasers. The microprocessor provides the flexibility and convenience of software control. The system status is presented on an easy-to-read LCD graphics display. The Model 8800V can be configured to include software, simmer supply and a capacitor charging power supply to form a complete turn-key laser flashlamp controller in a 19" rack mounted assembly. The 8800 V can also control two independent PFN/power supply outputs for Osc/Amp laser applications.

SPECIFICATIONS:

Input	198 to $253 \mathrm{VAC}, 1 \varnothing, 50 / 60 \mathrm{~Hz}$	Standard Features	Microprocessor/RS232 Menu driven interface
Output			One HV switch
Power	Up to 2500W		One capacitor module
Pulsewidth	100μ s to $>2 \mathrm{~ms}$		1750W supply
Simmer Trigger	-350V spike for external/parallel trigger transformer. Cannot be used with series trigger transformer.		28W simmer supply 8' HV lamp output cable 230VAC input cable with plug Operating Manual
Status Indicators	Systems status displayed on LCD Power on LED High Voltage LED	Options	Custom software Additional HV switch Additional power module for up
Size			to 2500W of average power
Front Panel	$7{ }^{\prime \prime} \times 19$		External capacitor box
Chassis	$6.5^{\prime \prime} \times 17^{\prime \prime} \times 17^{\prime \prime}$		60W simmer supply
Weight	$<45 \mathrm{lbs}$.		115VAC input

APPLICATIONS:

Solid-State Laser Control where Variable Pumping Pulsewidths are required.

OPTIONS	8800V
No. of HV switches One switch Two switches	$\begin{aligned} & -1 \\ & -2 \end{aligned}$
$\begin{aligned} & \text { Power Supply } \\ & \text { 1750w } \\ & 2500 \mathrm{~W} \end{aligned}$	$\begin{gathered} -5 \\ -10 \end{gathered}$
Charge Voltage (up to1000V) Add " C " to end of number if external capacitor box is used.	-(value) (C)
Simmer Output 28W 60W	$\begin{gathered} \text {-S } \\ \hline \end{gathered}$
HV Output Cable 30A RMs 50ARMS $100 A_{\text {RMS }}$	$\begin{aligned} & -1 \\ & -2 \\ & -3 \end{aligned}$
Input Voltage $198-253 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, 1 \varnothing$	-D

To select the correct 8800 V model for your application, use the two graphs at the bottom of the page. Knowing the lamp impedance parameter, K_{o}, and the Joules per millisecond desired in the application, determine the graph which best fits the requirement. Once the selection is complete, the Y axis will determine the number (one or two) of HV switches required and the corresponding area under the desired charge-voltage curve (400V, 800 V or 1000 V) will determine the maximum charge voltage required. The average power required is determined by the product of the Joules per pulse and the pulse repetition frequency. Please refer to the 8800V applications note for additional information on pulsewidth, PRF, and droop limitations of electronic PFNs. For custom configurations, contact our application staff for details.

For example:

1. Lamp impedance parameter $\left(\mathrm{K}_{\mathrm{o}}\right)=28 \Omega-\mathrm{A}^{1 / 2}$.
2. 350 J per pulse, 1 mS pulsewidth at 3 Hz is desired for the application.
3. Calculate the Joules/mS by dividing the Joules per pulse by pulsewidth required.
4. Find the lamp K_{0} on horizontal axis of graphs at bottom of page. Find the required J / ms on the vertical axis. Select the graph labeled "Joules/mS using Two HV Switches". This graph will accommodate the required $350 \mathrm{~J} / \mathrm{mS}$ with K_{0} of 28 . Also note that the intersection of K_{0} and desired J / mS falls just below the 800 V curve on this graph.
5. Calculate the average power required from the power supply with the product of Joules per pulse and pulse repetition frequency. $\mathrm{P}=350 \mathrm{~J} \times 3 \mathrm{~Hz}=1050 \mathrm{~J} / \mathrm{S}$ or watts.

Therefore, the application requires an 8800 V with two HV switches, charge voltage of up to 800 VDC and 1050 W minimum power supply.

AMI's complete model number is:
8800V-2-5-800C-S-2-D
Note: The graphs below represent typical performance and do not account for lamp risetime and droop over pulsewidth. For narrow pulse applications ($\sim 100-200 \mu \mathrm{~S}$), the energy "calculated" and energy "measured" by the microprocessor will differ due to lamp risetime delay. This delay is due to the dynamic properties of each lamp and will vary from lamp to lamp. For long pulsewidth applications, allowable droop should be considered on a case by case basis.

No. of High Voltage Switches: Power Supply: Charge Voltage:

Simmer Power: HV Output Cable:

Input: $198-253 V A C, 50 / 60 \mathrm{~Hz}, 1 \varnothing$

Joules/ms Using One HV Switch

Joules/ms Using Two HV Switches

